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1. INTZODUCTION

Let. > ("is preferred to") be a binazy relation on the set O of simpie
probability measures or 'gambles' defined on a set T of consequences.

Throughout this study it will be assumed that:

1. T is the Cartesian product of two or more nondegener:te closed and
bounded real intervals;

2. > on § satisfies the axioms of von Neumann and Morgenstern (1947)
or an equivalent system (Herstein and Milnor, 1953; Fishburn, 1970) so that
there exists u: T * Re such that

P>Q 1ff ZIP(t)u(t) > IQ(t)u(t), for all P,Q € ¥, (1)
T T
with u* satisfying (1) when u does iff u* is a positive affine transformation
of u of the form u* = uab where uab(t) = au(t) + b, a > 0;
3. The von Neumann-Morgenstern utility function u in (1) is continuous

(Grandmont, 1972; Foldes, 1972) in the relative usuzl product topology for T.

The purpose of the study is to analyze methods for approximating u. The
present paper deals with two-dimensional concequence spaces T = X *x Y; a
sequel paper will exemi, T = T1 x ’I‘2 X, 0% Tn with n > 3. Although con-
tinuity of u is not impliud by the axioms that are necessa:y and sufficient
for (1), and plausible examples of discontinuities are easy to imagine,
continuicy is crucial to mesr work in approximation theory (e.g. Cheney,

1966, and lo-entz, 1966) and will be assumed here,
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It is one thing to postulate the existence of continuous u on T that

satisfies (1) and is unique up to transformations uab

with a > 0, but gquite
another thing to estimate u in an actual decision situation. Consequently,
much effort has been devoted to theoretical and methodological aspects of
utility function assessment. The assessmen~ and approximation of single=~
variable utility functions is discussed by Meyer and Pratt (1968). Bradley
and Frey (1975), and Ohlson and Kallio (1975) among others. Theoretical
work in multiattribute or multivariate utility {(Fishburn, 1965, 1974;
Pollak, 1967; Raiffa, 1969; Keeney, 1971, 1972a; Fishburn and Keeney, 1974;
Farquhar, 1975) has focused on axioms for » on ¥ that allow u(tl,...,tn)

to be written as a combination of functions defined on fewer than n attributes,
such as u(tl,hz,...,tn) = ul(:l) + 1\2(t2) +...4+ un(tn) or u(tl,tz,...,tn) =
ul(tl)uz(tz)...un(tn). A desire to simplify the task of utility assessment
has motiveted much of this work. Examples of its application to specific
situations are given by Raiffa (1969), Keeney (1972b, 1973) and Keenev and
Nair (1974). Sicherman (1575) has developed an interactive computer program
for assessment in the additive and multiplicative cases.

Research workers who have been involved in the development of special
forms for multiattribute utility functions realize of course that the
independence axioms that characterize the special forms may fail to hold in
a given situation because of evaluative interdependencies among the attri-
butes. Consequently, there is a need to explore the general problem of
multiattribute utility assessment in the absence of simplifying independence
assumptions. Although there are several approaches to this problem, the
present study will focus on approximations of u that are written as finite
sums of products of functions on the individual attributes. In the context

of T=X» Y, the form of approximation that will be used here is




m
vix,y) = L fi(Xngi(y)- (2)

i=1
The only direct assessment of u that will be regquired for (2) involves either
the evaluation of u at a finite number of points in T or the evaluation of a
finite number of single-variable conditional utility functions of the form
u(x,yj) and u(xi,y), where Xy is a fixed element in X and yj Is a fixed
element in Y. The functions fi and g, may involve the conditional utility
functions or they may be specified independently of any utility assessment.
In later sections it will be asasured--as a first approximation--that there
is no error in the assessment of the u values used in the right hand side
of (2).

There are three main reasons for using (2). First, it is generally
conceded that it is much easier to assess single~-attribute utility funccions
than to assess two-attribute functions in their full generality. Secondly,
the sum-cf-products form of (2) is computationally attractive in the context
of optimization algurithms, Finally, the right hand side of (2) subsumes
the special forms of u(x,y) that have thus far been characterized by indepen-
dence axioms (Fishburn, 1974). The most general of these is u(x,y) =
ul(x) + uz(y) + hl(x)h (y), which agrees with (2) when m = 3 and f1 =u,

2 s
f2 =1, 53 = hx' gl 1, g2 = u? and g3 = hz.

The present paper is organized as follows. Some basic ideas from
approximation theory are briefly noted in the next section, and a result
from this theory is p.esented in our utility context. Tne simple additive
and multiplicative approximaticns are exumined in section 3. Section 4 then

discusses some elemeutary interpolation approximations based on finite sets

of single-variable conditional utility functions. 7T, final section examines
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approximations that are exact on a grid in X X ¥Y: that is, they give
v(xi,y) = u(xi,y) for every Xy in a finite subset of X and all y € Y, along
with v(x,yj) = u(x,yj) for everv yj in a finite subset of Y and all x € X.
Readers who are familiar with the diversity and scope of approximatinn
theory will realize that the present study represents a very modest step in
the development of a theory and methodology for the approximation and
assessment of multiattribute utility functions, it is hoped that the study

will elicit additional interest in the topic.

2. REMARKS ON APPROXIMATION THEORY

This section outlines a few basic ideas of approximation theory,
comments on aspects of (2) that will play a role throughout the paper, and
provides an application of approximation theory to our utility context. A
broader introduction to approximation theory car be obtained from the paper
by Buck (1953) and the books by Lorentz (1255) and Cheney (1966). Other
suggested works include the papers by Rivlin and Shapiro (1961), Lorentz
(1972) and Jerome (1973), the collections edited by Langer (1959) and

Lorentz (1973), and various arti-les in the Journal of Approximation Theory.

Appropriate to our purposes let S = [0,1]™ be the n-dimensional unit
cube and let C(S) be the real linear space (Kelley and Namioka, 1963)
of all continiovs real valued functions on S. The most csumonly used norm
in approximation theory for measuring distances between functions in C(S)
is the uniform nora

|[1£]} = sup |£(s)| = max [f(s)], f € C(8), (3)
3€S S




approximations that are exact on a grid in X X Y: that is, they give
v(xi,y) = u(xi.y) for every X, in a finite subset of X and all y € Y, along
with v(x.yj) - u(x,yj) for every yj in a finite subset of Y and all x € X.
Readers who are familiar with the diversity and scope of approxinntinn'
theory will realize that the present study represents a very modest step in
the development of a theory and methodology for the approximation and
assessment of multiattribute utility functions. it is hoped that the study

will elicit additional interest in the topic.

2. REMARKS ON APPROXIMATION THEORY

This section outlines a few basic ideas of approximation theory,
comments on aspects of (2) that will play a role throughout the paper, and
provides an application of approximation theory to our utility context. A
broader introduction to approximation theory car be obtained from the paper
by Buck (1959) and the books by Lorents (1366) and Chensy (1966). Other
suggested vorks include the papers by Rivlin and Shapiro (1961), Lorents
(1972) and Jerome (1973), the collections edited by Langer (1959) and
Lorentz (1973), and various articlca in the Journal of Approximation Theory.

Appropriate to our purposes let S = [0,1]® be the n-dimensional unit
cube and lot C(S) be the real linear space (Kelley and Namioka, 1963)
of all continuous real valued functions on S. The most commonly used norm
in approximation theory for measuring distances between functions in C(S)

is the uniform norn

||£]] = sup |£(s8)] = max |£(8)|, £ € ¢(S), 3)
3€S S
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the latter equality arising from compactness and continuity. (Least squares

minimization problems us2 the quadratic or Euclidean norm.) The uniform norm

%
b

will be used throughout our study. Convergence in this norm, i.e. llfm - f]l

7

+ 0 as m + « with f,fl,fz,.a. € C(S), is equivalent to the uniform convergence

fi ATBTERITEST

of the fm to f.

Let f € C(5) be given and let D be a nonempty subset of C(S) whose

g, s W

functions are prcoposed as approximations of f£f. Define d(D,f) = inf |[g - f||

. geDh
and let D = {g € D: |lg - £]| = d(D,£)}. Hence d(D,f) is the 'distance'

JEETERN

from D to £ and the functions in Df provide the best approrximations to f as

RPN

goueed by (3). Among other things, approximation theory is concerned with

the following questions:

o

1. Can d(D,f) be specified precisely, or is it possible to obtain

tight bounds on 1it?

2. What can be said about the functions in D for which ||g - f|] <

d(D,f) + § for given § > 07

3. Is Df nonempty, and, if so, can its structure and/or specific

: contents be identified?

The set D is frequently taken to consist of a finite~dimensional sub-

space of C(S) generated by a basis of linearly independent functions

o ] N
;} ‘ B s By in which case D = { & a 8. 8 € Re for all k}. For example,
~qh§ k=1
v D might consist of all polynomials in the n variables of highest degree r,
+ or, in our utility context, D might be based on con .iticnal univariate
&

utility functions., When D is a finite-dimensional linear subspa.e of C(S),

Df is convex and nonempty (e.g., Buck, 1954, Theoren 2).

‘mﬁ Yo kT,

Buck (1959) itlustrates the above ideas with a specific example using

n=2and N= 5. Let f(x,y) = xy and l=t g through gs in C(S) bYe
1

o, s J :



respectively the identity function (g1 = 1), x, ¥y, x> and y*. Buck shov.s
that d(D,f) = 1/4 and that D = {af1 + (1 - a)fzx 0 < a < 1} where ,l(x,y) =
(x2 + y?)/2 - 1/4 and fz(x,y) =x+y- (x2+y%)/2 - 1/4.

When D is an infinite~dimensional but 'small' subspace of C(S), 't
may be true that d(D,f) = 0 for every f € C(S) although Df must then be empty
for 'most' £ € C(S). A useful theorem developed by Bohman and Korovkir
(Korovkin, 1959; Lorentz, 1966, p. 7) shows that d(D,f) = 0 for all £ € C(S)
can sometimes be established by showing only cthat d(D,f) = 0 for a finite
number of specific functions f. Consider, for example, the famous Welerstrass
approximation theorem (Lorentz, LYoo, p. 10), which says that d(D,f) = 0 for
all f € C(S) when S = {(t1""’tn): 0<t, < 1} and D is the space of all

ordinary algebraic polynomials in t;""’tn' Using the Bernstein polynomials

m m EL kn
Bm(f;tl""’tn) = kZ cee Z- f(m""'7;)bmk (tl)"'bmk (tn), (4)
l=o kn 0 1 n

where bmk(ti) = (:)c:(l - ti)m-k, the Bohman-Korovkin theorem allows one to

prove the Welerstrass theorem by showing that Bm(f) + f as m > © for each
of the 2n + 1 functions 1, t,, ti, (1 = 1,...,n).

Although the above discussion barely scratches the surface of approxi-
mation theory, it will suffice for our present purposes. We now return to

our concern with two-attribute utility functions,

Considerations in Utility Approximations

Throughout the remainder of this paper we shall take T = X x Y = [0,1]?
without loss of generality since the closed and bounded intervals for the

two attributes can be mapped linearly onto [0,1]. Two different types of




£

e it

g

§ %ﬁ‘ approximacions of continuous u on T by (2) will be considered according to
! %5 whether the approxim:*ion attempts to provide exact -alues of u at the
; gf poiats in T at which u iz assessed directly. (See the dizcussion following
i i (2).) Cases in which v(x,y) = u(x,y) for certain designated points in T or
%} for certain conditional utility functions on X or Y are cases of approxima-
! %l ~ion by interpolation. Some elementary interpclation methods are presented
‘ i in the ensuing sections.
‘ ? The proof method mentioned above for the Weierstrass theorem is not
; based on interpolation since the Bernstein polynomials, which in the present
i contex®. can be written as
/ Ty
| ) = L uimm (Dt - D" A - ™ o
{ i=0 j=0
; do not generally yield vm(i/m,j/m) = u(i/m,j/m). In fact, as show.: by raber
(1914), the Weierstrass theorem ca-not be proved using interpolating poly-
; nomials. Since the Weierstrass theoxem shows that Hvm -u|l| »Casm~> o,
) : (5) provides a specific instance for (2) in which the uapproximation for u
. ? s becomes precise in the limit. Nevertheless, it appears (Lorentz, 1966,
; ‘}‘ i p. 102) that the convergence of v, to u is ratter slow compared to the
t;'iqﬁ - convergence obtained by polynomials in Dém), where D(m) = | ? '? aij xi yj:
?; ;} | aij € Re). i=0 j=¢
if 3% Approximations (2) can also be classified according to whether v
| ‘ undergoes the same affine transformation as does u when u on the right hand
A = side of (2) 1s replaced by uab = au + b, a > 0. Given v(x,y) = Zfi(x)gi(y)

as in (2), we shall let vab denote the runction obtained from Zfi(x)gl(y)

. - . . ; . a
when every instance of u in this expression is replaced by u b It is
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important to realizz2 that vab need not be equal to av + b. We shall say

that v is affine preserving at (a,b) 1f and only if vab(x,y) = av(x,y) + b

for all (x,y) € T, and that v is offine preserving if and only if it is

affine preserving at (a,b) for all a > 0 and all real b. Since

ab

v 0y) = I Ileu(/m3/m + b1 A - 0™ Sy a - ™

i3

= avm(x,y) + b,

the approximation (5) 1s affine preserving. The approximations considered
in ensuing sections are affine preserving when b = 0, but several are not
generally affine preserving at (a,b) when b # 0.

We shall also be interested in whether v is monotonic in x and/or y
when u is monotonic in x and/or y. If v is monotonic increasing ir x whenever
u is monotonic ircreasing in x, and if v is monctonic decreasing in x whenever
u is monotonic decreasing in x, then we shall say that v is monotoricity

preserving in x, A similar convention holds for v. In addition, v is said

to be monotonicity preserving if it is monotonicity preserving in each

variable.

3. ELEMENTARY APPROXIMATIONS

This section examines cimple additive, multiplicative, and additive-
multiplicative forms for v. Conditi>ns for » on % under which these forms
are exact (i.e. !lv - ull = 0) when the 1uncilinns involved in (2) are properly
aligned are presented in Fishburn (1974) and will not be repeated herr with

the exception of a comment folle- ‘ng the nroof of Theorem 5.
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The Simple Additive Form

We begin with the simple additive form. Recall that T = X x Y = [0,1]2%.
THEOREM 1. Given fixed (xl,yl) € [0,1]% suppose that
v(x,y) = u(x,y ) + u(xl,y) - u(xl,y ), for all (x,y) € T. (6)
A i

Then v(x,y) = u{x,y) if x = x1 ory= yl, and v is affine preserving and

monotonicity preserving. 1n addition, with W = max u(x,y) - min u(x,y),
) T T

(x ,y ) can be chosen so that
171

(a) ||v - u||_i (5/2)4,
®) ||v - ul]
) [lv - ull

{ A

W if u is monotonic in either x or y,

in

(1/2)W if u is monotonic in both variables.

If u is constant then W = 0 and (a) through (c¢) hold with equality. 1In
general ||v - u|| = 0 iff u(x,y) + u(xl,y ) = u(x,yk) + u(xl,y) for all
(x,y) € T, regardless of how (xl,yl) is chosen. It may also be noted that
th. hound in (¢) is satisfied when the constant approximation v(x,y) =
(max u+ min u)/2 is uzu, regardless of whether u is monotoni:, However,

this approximation does not have the furn of (6).

Proof. The assertions in the first part of Theorem 1 are obvious from

(6). The heavy line segments in Figure 1l(a) show where v must equal u., To

Figure 1 about here

prove the latter part of the theorem, observe that

[VGy) = uey) | = Juloy) +ulx Ly ) - ulny)) - uxonl,

Hv = ul] = max |[v(x,y) = u(x,y)|

r
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For notational convenience suppose that u is not constant and let max u(x,y)
T
= 1 and min u(x,y) = 0. Choose (x ,y ) so that u(x ,yl) = 1/2. Then
VU H
|{v = ul| < 3/2. 1If u is monotonic in x then, when (x,y) is in region I of

Figure 1(a),

[vi,y) = ulx,y)| < max {luGx,y) - ulx )], Julx ,y) - uGxy )|} <L,

and similar calculations in the other three regions show that ||v - u}] < 1
The same conclusion hoids if u is monotonic in y. Finally, suppose that u
is monotonic. We consider explicitly only the case in which u increases

in x and decreases in y: other cases are left to the reader. By examining
signs of u differences it follows that, when (x,y) is in region I of Figure

1(a),

v(x,y) = u(x,y)|  min {max {u(x ,y) - u(x,y),u(x ,y ) - u(x,y )},
max {u(x,y) = u(x,y ),u(x ,y) - u(x aY‘)}}

< max {1/2,mia {u(x ,y) - u(x,y),u(x,y) - u(x,yl)}} = 1/2

since min {u(x',y) - u(x,y),u(x,y) - u(x,yi)} < 1/2. When (x,y) is 1n region

II of Figure 1(a), [v(x,y) - u(x,y)! < min {max {u(x,y) - u(x ,y),u(x,y ) -
u(xl,y )}, max {u(x,y) - u(x,yn),u(xl,y) - u(xl,y‘)}1 < max 11/2,min {u(x,y) -
u(x:,y),u(x,y) - u(x,yl)}} = 1/2 since 1/2 < min {u(x ,y),u(x,y)}  max {u(xl,y),
u(x,y )} < u(x,y) < 1. The region III and 1V analyses are similar respectively
to th'se for regions I and II. The affine transfermation UWb on u for which

max u = 1 and min u = 0 then gives conclusions (a), (b) and (c) as stated

in the theorem. Q.E.D.

The preceding proof chose (x ,y ) so that u(x ,y ) 1s midway between
1 ' .

min u and max u. Despite the fact that many points in T have a u value that
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is midway between the extremes of u, it does not follow that one of these
will minimize ||v - u|| when v is given by (6). Although it is not generally
possible to select (xl,yl) to minimize ||v - u|| without knowing u on all of
T, there are cases in which this might be done when u is not completely
known. To illustrate this, we shall say that u is conservative when it is

strictly increasing in both variables and
{0<x <x*<1,0 <y <y* <1} =ulxy*) +ulxy) > u(x,y) + ulx,y*). (7)

If approximation v is conservative whenever u is conservative, then v will be

said to be conservatism preserving. Since (6) gilves v(x,y*) + v(x*,y) =

vix,y) + v(x*,y*), it 1s not conservatism preserving.

A plausible example of conservatism (Fishburn, 1973; Richards, 1973)
arises when the pairs in T are two-period income streams. Then (7) holds if
the even-chance gamble between (x,y*) and (x*,y), which ensures one of the
larger amounts x* or y*, is preferred to the even-chance gambls between
(x,y) and (x*,y*), which could (pr. = 1/2) result in the lower amounts x and

y in both periods.

THEOREM 2. Suppose that u is conservative and v is given by (6). Let

[|v = ul]

y denote the value of ||v - u|| when (x ,y ) is used as the
Faen X Ly,

(x .y
fixed point in (6) and let

A = uw(l,0) + u(0,1) - u(0,0) - u(1,1).

Then (x ,yl) can be chosen so that 4/4 < | < A/3, and 1t is

v - u||(x )
1 i

impossible to have ||v - ul| < A/4. Also let

Gy ) = D)+ ety) - uiy) - u(i)] (8)

YRR TR
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for i € {0,1} and j € {0,1}. Then ¢,, > 0 for each of the four (i,3) pairs,
= and 2280 P44 pairs

and

HV = UI I (X,Y) = max {‘:POO(X’Y)’{PJ.I(h Y)’CPOI(x’y),(PIO(x’y)}. (9)

Moreover, there exists a unique (x*,y*) € T that satisfies ¢ G(x,y) =
0

mll(x,y) and wuv(x,y) = ¢1o(x,y), and the unique x* and y* are specified ty

u(x*,1) - u(x*,0) :.--2]2 fu(1,1) - u(1,0)] +';-_ [u(0,1) ~ u(0,0)] (10)

u(Ly®) - u(0,y%) = F [u(L,1) - w(0,D] + 3 [W(,0 - u(©,0]. 1)

Given (x*,y*) as specified:
(1) 1f @ (ehy*) = @ (%) then [|v = ul| (o oy = 876;

(11) if moo(x*,y*) < wOI(x*,y*) then ||v - u|| is minimized by a

point that satisfies ¢ (x,y) = ¢ (x,y); and ¢ (x,¥) = ¢ (x,y) = ¢ (x,y)
04 10 - "0 10 00

and QOI(x,y) = wlo(x,y) = wll(x,y) are respectively satisfied by points

interior to T at which ||v - u|| < A/3;

(111) if Qoo(x*,y*) > @ (x*,y*) then ||v - u|| is minimized by a
it o1 then

point that sarisfies woo(x,y) = wll(x,y); and woc(x,y) =9 {xy) = @Ol(x,y)

and @oo(x,y) = le(x’Y) = Qlo(x,y) are respectively satisfied by points

interior to T at which ||v - u|] < A/3.

The part of Theorem 2 that precedes (8) simply summarizes assertions
spelled out in greater dctail following (8). Using (7), the four equations
of (8) give the values of |v - u| at the four corners of T when (x,y) is
the fixed point in (6). Equation (9) says that the largest value of [v - u
occurs at one of the four corners of T for every choice of fixed peint in

(6). Since as is easily checked,

e R TR



P VU I USSR N

. SRR IR SR Vs T S S, B SRR R ’?w%%?

13

¢ (xy) +9 (xy)+¢ (xy)+¢ (x,5) =4,
00 11 01 10

it is impossible to have ||v - u|| < A/4. The final part of the theorem
shows how a fixed point for (6) can be identified so that ||v - u|| < A/3
regardless of the nature of u so long asAit is conservative. The interior
point qualification is used in (ii) and (iii) since, for example, @01(0,0) =

mlo(0,0) = ¢°°(0,0)€= 0, in which case ||v - ull(o,o)

= ¢ (0,0) = A,
1) -

Proof. Using (7) it is easily seen that P 5 >0 for all i,j € {0,1}
and that wij(x,y) > 0 whenever (x,y) is on the interior of T. To verify (9),
suppose first that (xl,yl) is the fixed point for (6) and that (xz,yz)
lies in region III of Figure 1(a), with x < x2 < 1 and y1 < yz_i 1, and

(xz,yz) # (1,1). Then, by conservatism,

U(xz,l) + u(l,yz) > u(xz.yz) + u(l,1)
u(x ,1) + u(x ,y ) > u(x ,y ) + u(x ,1)
1 272" — 1772 2

u(xz,yz) + u(l.yl) > u(xz.yx) + u(l.yz)

with at least one strict inequality. Addition of these three inequalities
then gives u(x},l) + u(1,y1) - u(xl,yl) - u(l,1) - U(XZ’Y;) + U(Xl,yz) -
u(xl,yi) - u(xz,yz). or @1 (x:,yl) > v(x2,y?) - u(xz,yz) Consequently
|v(x,y) - u(x,y)| 1s maximized in region III at (x,y) = (1,1). Similar
analyses in each of the other three regions of Figure 1(a) shows that,
regardless of the choice of (xl,y)) for (6), |v - u| is maximized at one of
the four corners of T, and (9) then follows immediately.

To verify (10) and (11) and prepare for the final assertions in the

theorem, we write ¢ (x,7) = ¢ (x,y) and wo (x,y) = ¢ 0(x,y) in terms of
¢ N i '

u, using (8), to obtain respectively
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U(l,}') - U(O,}’) [u(1,1) - u(0,0)] - [u(x,1) - u(x,0)1, (12)

u(l,y) - u(0,y) = [u(1,0) - u(0,1)] + [u(x,1) - u(x,0)]. (13)

Conservatism implies that u{l,y) - u(0,y) decreases in y and that u(l,x) ~
u(0,x) decreases in x. Thus, for each x, (12) will be satisfied by a unique
y that decreases as x increases, with y = 1 when x = 0 and y = 0 when x = 1,
Similarly, (13) has y = O when x = 0 and y = 1 when x = 1 with the unique y
solution for each x increasing as x increases. The resulting curves in T

described by (12) and (13) are shown in Figure 2. Their unique point of

Figure 2 about here

intersection is (x*,y*) as specified in (10) and (11). This point is given
by the joint s:lution of (12) and (13). 1If woo(x*,y*) = wOI(x*,y*) then all
four Wij are equal to A/4 at (x*,y*) and this point uniquely minimizes
||v - ul!, as specified in (i) of the theorem, following (11).

The following lemma, which is a variation on the theme of the first

part of this proof, will be used in dealing with (1i) and (iii).

LEMMA 1. If (i,j) # (xl,y ) # (xz,yz) and (x2,y2) is in the rectangle
=L \ anc

(or straight line segment if 1 = x or j = y ) two corners oi which are

(x ,y ) and (i,j), then mij(xl,y‘) > ¢ij(x2,y2).

Proof. Suppose first that (i,j) = (1,1) with (x ,y ) and (xz,y ) as
B v 2

pictured in Figure 1(a). Then, by conservatism,

u(x ,1) + u(xz,yz) 2 oulx ,y2) + u(x ,1)

u(x ,y ) +ulx ,y ) > ule,y )+ ulx »y )

u(l,y ) +u(x ,y ) >u(x ,y )+ u(l,y)
2 2 - 2 1 2
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with at least one strict inequality. Addition of these inequalities gives
U(xl,l) + u(l,yl) - u(xl,yl) - u(l,1) > u(xz,l) + u(l,yz) - u(xz,y,) -
u(l,1), or Qll(xl,yl) > ¢11(x2,y2). The other three regions in Figure 1(a)

are handled in a similar fashion. Q.E.D.

We now return to (ii) and ('ii) of the thecrem., Consider the noint

labeled Q in Figure 2. By Lemma 1, ¢ (Q ) >¢ (") and g (Q) >¢ (Q),
0 00 0 0% 1 TS 110
ce = > o Sima H H
and, since moo(Ql) wll(Ql), woo(Qo) wl‘(Qo) imilarly, using Q ¢nd
Q,% Q)>¢ (Q). ByLemma 1, ¥ (Q ) and ¢ (Q ) will be reduced when
2 10 0 01 0 e 0 100
the fixed point for (6) i. moved from Q’ in the directiocn of the arrow
eranating from Qo’ and therefore ||v - u,| cannot be minimized by taking Q0
as the fixed poiut for (6). Similar resul.s apply in the other three
regions of Figure 2. Consequently, min ||v - u||(x ) must occur at a point
T H]
on one of the won = ¢1 and ¢01 = ¢ . curves, We have already noted that
Iy 1
tie (unique) minim.zing point will be (x*,y%) if ¢0~(x*,y*) = mo {x*,y%)
v R
Suppose as in (ii) that moo(x*tv*) < wo x*,,*Y  Then, by Lemma 1,
)

||v ~ u"(x*,y*) < qlv - ull(x,y) for every (x, . # {x*,y*) on the moo =%
curve. (A move from (x*,y*) towards (0,1) will incicase @«o' which was one
of the maximizing wij at (x*,y*).) Therefore a fixec p- iut for (6) that
minimizes ||v - u|| nust lie on the wo = @10 curve. by L 'pothesis in this

paragraph, wo (x*,y*) = ¢ 1(x*,y*) < @0 (x*,y*) = ¢ (x*,y*). As the fixed
1] i i PR

puint for (6) moves upwards from (x*,y*) to (1,1) along the wo = ¢:o curve,
@Oo(x,y) increases continuously up to A = moo(l,l), wll(x,y) decivases to
0 = w_}(l,l), and wO:(x,y) and @lo(x,y), which are equal, may Fiuct-ate but
eventually arrive at zerc at (1,1). It follows from continuity that here

is a pciut on this part of the ¢ = ¢ curve whete ¢ =¢ =¢ > /4 >
01 o

+ 0 0v

4 C

P >0, e.g. Qz, anld with this point as the fixed pcint for (6) we obtea..

'
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|!v - u]| < A/3 with the use of (9). The remaining parts of the proofs of

(1i) and (iii) are similar. Q.E.D.

If (7) is changed by revers’ -g the inequality to u(x,y) + u(x*,y*) >
u(x,y*) + u(x*,y), which might suggest a 'daring' u instead of a 'conservative'
u, then an obvious correspondent to Theorem 2 foliows under appropriate sign
changes.

Theorem 2 il.ustrates typical concerns of approximation theorv as
outlined after (3). For Theorem 2, D is the subset of C(T) whose functions
are given by (6) as the fixed point (xl,yl) ranges over T. Unlike most
typical cases, D depends explicitly on u. Theorem 2 shows that A/4 < d(D,u)
< A/3, and (9) implies that Du is nonempty. Functions in or near to those

in Du were identified in the latter part of the theorem.

The 5._mple Multiplicative Form

The basic multiplicative approximation for u on T = [0,1]% can be
expressed as v(x,y) = £(x)g(y), as in (2). Although it is not necessary
to align v with u in any specific way, we shall consider the case in which
v(x,y) = u(x,y) whenever x = X ory=y, where (xl,y )} is a fixed point
in T. This coincides with our alignment of the additive approximation (A).

Given v(x,y) = £(x)g{y) with u scaled so that u(xl,y ) # 0, the specified

alignment implies that

u(x,y )U(XL’Y)

v(x,y) = , for all (x,y) € T. (14)

U(X"yl)

Although this looks quite different than (6) and indeed 1s in most cases,

we shall see momentarily that (6) 1is a limiting case of (14).
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If u has constant sign then v as given by (14) is monotonic in X or y
when u is monotonic in x or y, but if 0 is in the interior nf the image of
u then monotonicity praservation does not generally hold. Another difference
between (14) and (6) is that (14) is not generally affine preser-ing. In

particular, when (14) is used and au(xl,yl) +b# 0,

[au(x,yl) + b]iau(xl,y) + b]
au(xl,yl) + b

b
Va (x,y) =

ablu - ax,y )]l{u - u(x ,y)]
11 1 11l L

u (au + b) ’
1l 11

= av(x,y) + b - ‘15)
where for convenilence we define uxx = u(xl,yl). This shows that (14) is
affine preserving at (a,b) if b = 0, but it is affine preserving when b # 0
only under very special conditions, i.e. when u11 = u(x,yL) or ull = u(xl,y)
for all (x,y).

The essential nature of vab remains unchanged if it (rather than u)

undergoes a positive affine transformation. In particular, if we subtract

b from both sides c¢cf (15) and then divide by a, we obtain

ab ) B
x QXQXQ_;_§‘= v(x,y) + {u (aub m b)}[u'1 - u(x,yl)][ul‘ - u(x ,y)1. (16)
HEY 11 ) * '

For convenience, let K = =b/[u (au , + b)] and let vK(x,y) denote the left
o1 ]

hand side of (16). Then (16) can be written as

u(x,y Ju(x ,y)
VK, y) = Tt Kl - u(oy ) lu - ux L, an

where X is any real number other than -1/u . The latter value of K is

forbidden since it correspends to b = 0 or b = -» in (16). Any other real
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value of K is obtainable from K = —b/[u“(au11 + b)], and infinite K is
forbidden by the proscription against au11 + b = 0 in writing (15). It is
easily checked that VK(x,y) = u(x,yl) + u(xl,y) - u(xl,yl), which is the
additive form (6), when K in (17) is set equal to the forbidden value of
-l/ubl. Hence, by choosing K for (17) arbitrarily near to —l/ull, the
multiplicative approximation (17) becomes arbitrarily close to the addit:ive
approximation (6); the convergence of (17) to (6) as K approaches —l/ul‘ :
easily seen to be uniform. Hen-e all results stated for the additive case
apply, In the limit, to the multiplicative case,

Tt is important to note that the utility function u as used in (15),
(16) and (17) is precisely the same function used in (14). Equation (17)
simply describes *he family of all basic multiplicative approximations--
uni¢ e up to isomorphism under positive affine transformations on the
approximations--that correspond to different ways of choosing an ciigir and
scale unit for u and that reuder the approximation exact when x = x ¢z y

s

y . The parameter K in (17), unrestricted except by K # -1/u , desnribes
. ‘

the different approximations in this family. Naturally, it the fixed p-ip-
{x ,y ) used in (14) or (17) is changed, then a different fam.ly of mulr.-
plicative approximations is described by (17).

The multiplicative approximation is more flexible than the additive
approximation in the sense that, in addition to X and y{, 1t bhas the
parameter K that can be manipulated in fitting a simple moltiplicative
approximation to u. We shall investigate aspects of this flexibility in rhe

exr several theorems. The first of these follows immediately from -le

discussion tollowing (17). Recall that u = u(x ,y ).
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THEOREM 3. Suppose u is naturally additive, so that ||v ~ u|| = 0

when v is specified by (6), and u11 # 0. Then, for every § > 0, there is

akK# —l/ull such that ||vK - u|| < &, where vy 1s specified by a17).

In other words, any additive (and continuous) utility function u on T
can be approximated arbitrarily closely by an appropriate multiplicative
function. Note, however, that the converse of this is not true. Consider,
for example, the naturally multiplicative function u(x,y) = xy. The general
form of (6) for this case is v(x,y) = c¢x + dy - cd, with ¢,d € [0,1]. As in
Buck's example of the preceding section, the smallest value of ||v - ul|
obtainable in this case 1is 1/4, which occurs when ¢ = d = 1/2.

Another indication of the flexibility permitted by K is given by the
following theorem, which discusses the possibility of making the multiplica-
tive approximation exact at a point (xz,yz) for which x2 ¥ x1 and y2 # yl,
ag pictured in Figure 1(a). For notational convenience we extend the previous

convention of writing u(xl,yl) as u11 by defining Uy according to

u,, = u(xi,yj). (18)

ij

THEOREM 4. Given u with U # 0, let % be defined by (17) and let
(x ,y ) be a point in T at which x # x andy #y . Then v,(x ,y ) =
2 2 mmmmem—mmes s T 1 — 72 1 —— K727

u(xz,yz) = u22 for some K # -l/ull if and only if either:

(@ {u =u andu =u }or{u =u andu =u 1}, in
11 21 — 12 22 — 11 12 == 21 22—

which case v . = fcr every K; or
c e Vylx, y)=u, y Ky or

bB)u #u #u andu +u #u +u , in which case
12 11 21 — 11 22 12 21

z =u if .~ only if K = - -
K(}z’yz) 22 v OhY [ull e T Y u21]/[u11(u11 Y12

(u =-a )},

11 21

v
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Proof. To satisfy VK(X sY ) = u we require
- 2 "2 22

u u +Xu [u -u Ju ~-u J=u u , (19)
21 12 11 11 21 11 12 11 22

using (17). If u11 = u21 then (19) holds if and only if u12 = L and 1if
u =u then (19) holds if and only if u = u . In either case,
11 12 21 22
vK(x Y ) =u for every K. The only other possibility for u 1is u
272 22 11 12
u11 and v ¥# u11’ in which case (19) holds for the unique K specified in
alternative (b) of the theorem. This value of K equals —l/ull if and only if
u [u u -u u }J=-u (u =-u )(u =~u ), which reduces to
11 11 22 12 21 11 11 12° 11 21

u +u =u +u . Q.E.D,
11 12 12 21

Given (xl,yl) as the fixed point in (6) or (17) with u ¥ 0, and given
x2 ¥$ X and y2 # yl, Theorem 4 shows chat neither (6) nor (17) can be made
exact at (x ,y ) if, and only if, either (w =u andu % u ) or

2772 21 11 22 12
u =u andu #u ).
12 11 22 21

Our next theorem parallels the final part of Theorem 1 in describing
'best' upper bourds on ||v - u|| when the multiplicative form (14) 1s used.
Instead of using (17) we shall work directly with (14), taking min u(x,y) = r
and max u(x,y) = r + 1, and present the bounds as functions of r. The choice
of r corresponds to the choice of K in (17) when, for example, u is fixed with

min u = 0 and max u = 1, Because the midpoint r + % of the interval for u

equals 0 when r = -1/2, we consider only r 2_-1/2 explicitly.

THEOREM 5. Suppose v 1is specified by (14) with min u(x,y) = r,

max u{x,y) = r + 1, and u1 # 0. Then:
anc v, Lhen

2
. : r° + +
(8) If r > C, it is always possible to have ||v - el i-%;rf;—%fﬁ:F%,

and the value of u = u(xl,yl) that assures this bound is u = (2r? + 2r + 1)/

i 1l

(2r + 1); it -1/2 < x < 0 then Hv - ul| < 1 can be assured by taking

u =1 + 1;
11

& Y I T &
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(b) If u is monotonic in one variable and r > 0 then it is always

possible to have ||v - u|| < 1, and this bound is assured by every u €

[(r + 1)%/(x + 2),r + 1]; if u is monotonic in one variable and ~1/2 <r<ao,

then ||v - u|| < 1 can be assured by taking u =l

(c) If u is monotonic in both variables and r > O then it is always

possible to have ||v - ul] S-EE_E_%’ and this bound is assured by taking

u =t +-%1 if u is monotonic and -1/2 < r < 0, then ||v - u|| < i is assured

by taking u11 =r+ 1.

This theorem and its ensuing proof show that monotonicity has no zffect
on the best general upper bound on ||v - u|] when the image of u contains
the origin and v is specified by (14). Moreover, the bounds in Theorem 5
are respectively smaller than, identical to, and larger than the additive
approximation bounds from Theorem 1 for the three cases (a), (b) ard (c).

This is illustrated by Figure 3. As r increases, the bounds for multiplicative

Figure 3 about here

v approach the bounds for additive v.
Proof. Throughout this proof we write E = |v - u|, or

u(x,y Ju(x ,y)
E = & 1 - u(x,y)]|.
11

Given r > -1/2, our objective is to identify a value of u X between r and
- 1
r + 1 that ensures a 'best' upper bound on the value of E regardless of the

nature of u so long as min u = r, max u = r + 1, and u satisfies the

monotonicity conditions (if any) that are specified.
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If u is subject to no monotonicity restrictions and r 2 0 then

2 2
max E < max {1561;32_._ r,(r + 1) --ﬁ——}.

T 11 11

The right hand side is minimized when (r + 1)%/u - r = (r + 1) -~ r?/u , or
11 11

when u11 = (2r® + 2r + 1)/(2r + 1), and this choice of u11 gives

max E < 3r2 +3r+ 1
—2rZ +2r + 1’

as specified in Theorem 5(a). Continuing without monotonicity, suppose

-1/2<r<0. Ifu >0 then

2
max E < max {ﬁ!ai_ll_ - r,lzj%i;t—ll - (r+ 1]}

11 11

The right hand side of this is minimized when u11 is maximized at u1 =r+1,
. 1

so that max E < 1, given u11 >0, Ifu X < 0 then
- 1

2
max E < max {|££:i—ll" - (r + 1)|.££§¥t41l -r

11 11

[N
Jy

and, with u

[, = T max E < max {-(r + 1)/r,1} = =(r + 1)/r. Since -(r + 1)/

> 1 when -1/2 £ r < 0, the best general result 1s achieved in this case by
setting u11 =r + 1, with max E - 1. This completes the proo: of Theorem 5(a)
For Theorem 5(b) assume without loss in generality that u is increasing
in x. (If u decreases in x, a change in variable from x to 1 - x leads to
the same results,) An analysis of E according to the region of Figure 1(a)

that contains (x,y) yields the following cunclusions when r > 0:
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u (r+1)
teouley) f_u(xl,y), u(x,yl) Sy, max B omax {- " — -,
11
l'r_qéML" u(x’}’)l} = max {1,(r + 1)1 - I‘/U“)} = 1;

11
1I. u(xl,y) < u(x,y), u 2 u(x,yl). max E < max {1,(r + 1)

[(r + l)/u” - 11}
111, u(xl,y)‘i u(x,y), u11 f_u(x,yl). Same as 1I;

V. u(x,y) f_u(xl,y), u(x,yl) ﬁ_ull. Same as I.

Therefore max E < max {1,(r + 1)[(r + 1)/u11 - 1]} = 1 whenever (r + 1)
[(r + 1)/u11 - 1] <1, i.e. wheneverx u, > (r+ D/ (r +2), given r > 0.
Suppose next that -1/2 < r < 0. Since this case is Intermediate between
(a) and (c) and, in each of these, max E < 1 is obtained by taking u11 =
r + 1 (see below for (c¢)), the same result must hold for case (b).

For definiteness in (c) assume that u increases iu both variables.
Given r > 0, an analysis of E by the regions of Figure 1l(a) yields the
following:

u u
I. u(x,y) < {u(xi,v),u(x,yl)}j}kl. max £ < max {—lt——li -r,
11

.z
max ]ES§‘XL“ - u(x,y)|} = uooT T

r<u(x,y)<u . 11
el = 1

11. u(xl,y) < {u(x,y),ull}_i u(x,yl). wax E < max {(r + DA - r/ull),

r+1-u 1}, where the terms in braces are computed using u(x,y)
1

u(xl,y) and u(x,y) = u(x,yl);

L. u < {J(x,yl),u(xl,y)} < u(x,y). max E < max {!uxx - (xr + 1),
LS 2
max !HSELXl— - u(x,y)|} =max {r +1 - u ,E%j;;L
u <u(Xx,y)<r+l uxl ‘4 111
(r+1—u)}=£—t~l(r+l-u_);

! ‘

11
. ux,y ) < {u(x,y),u 1} < u(x ,y). Same result as I1.
- - )
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Therefore, given r >0,

r+1

max E <max {u - r, (uw -1),r+l-u ,—=(r+1-u )}
- 11 u 11 11 U 11
11 11
= pax {& + 1(u - r),r + l(r +1-u )}
u 11 u 11
11 11
= (r + 1) max {1 - ;E—-E—i;i - 1},

11 11

The final expression here is minimized when the two terms in braces are
equal, i.e. when u11 = r + 1/2, in which case max E < (r + 1)/(2xr + 1). To

complete the proof of (c), assume that -1/2 < r < 0. Givenu > 0da
s d

regional analysis of E shows that max E is governed by (r + 1)(u11 -r)/u ,
11
whose minimum value equals 1 when ull = r + 1., A lower bour’ n E cannot

be obtained by taking ull < 0. Hence max E < 1 withu = r + 1 when

Y

-1/2 < r < 0. Q.E.D.

A final comment on the simple multiplicative form is in order before
we consider anonther type of approximation. Suppose that X is utility
independent of Y and Y is utility independent of X in the generalized sense
dis~ussed by Fishburn (1974) and Fishburn and Keeney (1974). Then, with

(x ,¥y J,(x ,y )€ Tsuch that u #u andu #u , whereu = u(x .y )
9 "0 AN 11 01 1) 10 01 v T

and u_ = u(x ,yo) as in (18), it can be shown that ||v - u|| = O when v
o 1

is defined by

(u u =u u )fulx,y ) +ulx,y) -u ]
10 01 00 11 1 1 Iy
+ (u +u =-u =-u Hu(x,y Ju(x ,y)
v(x,y) = 09 1l Q1 19 1 L . (20)
(u =-u Y -u )
[ 01 sl 10
If u is naturally additive then uOo +u = u0 + u and (20) reduces to
b1 ' 1o

(6). If v +u  # u + 1 then (20) is identical to (17) when
00 IO i 1]
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K= u -u u )/[u (u -u )(u =-wu )], and this value of K is
0 01 10 11 11 10 11 0l

not equal ‘o —1/u11. This shows that, when u is not additive, the multi-

plicative form (14) or its counterpart (17) corresponds to the generalized

version of Keeney's notion of utility independence in each direction.

The Simple Additive-Multiplicative Form

The simple additive and multiplicative approximations are exact along
the two heavy line segments shown in Figure 1(a) when (xl,yl) is the fixed
peint used in the approximaticns. We shall now examine a mixed additive-
multiplicative approximation that is based on two fixed points, (xl,yl) and
(xz,yz), and that 1s exact along the four heavy line segments of Figure 1(b).
A different approximation that is also exact when x € {xl,xz} or y € {yl,yz}

will be mentioned iater in section 5.

THEOREM 6. Suppose that
v(x,y) = £ (x) +g () + £ (X)g (), for all (x,y) € [0,1)%, (21)

that v{x,y) = u(x,y) when x € {xl,xz} or y € {yl,yz}, and u + u. #u \ +
—_— — — — 1 ;

4@ . Then
21

vix,y) = {u(xl,y)u(x.yl) + U(xz,y)u(X.yz) (22)

u + u -u
A 22 12 21

- u(x ,y)ulx,y ) - a(x_,y)u(x,y )
1 2 pd !

+ulx ,y)u -uv ] +ulx,yilu -u ]
1 22 1 2 14 K

- . 12

+ u(x,yl)[u22 - u!2] + u(x,yz)IUJl . uZl}

+u4 u -u u !}
12 21 11 22

or, equivalently,
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v(x,y) = u(x,yl) + u(xl,y) su (23)
[ - + - = > + -
fu(x yz) u(x,yl) u. “121[“(x2’Y) u(x1 y) U “21]
u +u =-u -u ’
11 22 12 21

+

and v is affine preserving.

Proof. Given (21) and the other initial conditions of the theorem,

substitution of x1 for x and then x2 for x in (21) gives

g (y) + £ (x)g (y) = u(x,y) - £ (x),
2 3 1 3 1 1 1

g, (y) + f3<x2>g3m =ulx,y) - £ ().

Simultaneous solution of these equations for the 'unknowns' gz(y) and ga(y)

gives

£(x )u(x,y) - £ (x)) - £ (x)[u(x,y) - £ (x )]
3.2 . 1 L 31 2 1 2
fa(xz) - f!(xl) ’

g (y) =
2

fu(x ,y) - £ (x )] - [u(x ,y) - £ (x )]
2 1 2 1 1 1
£ (x)~-f (x) '
3 2 3 1

sg(y) =

Substitution of y1 for y and then y2 for y in (21) leads, in similar fashion,

<0

g (ydulx,y ) - g (y )] =g (v )lulx,y ) - g (y )]
3 2 1 2 i 3 i 2 2 2
ga(yz) - gj(yz)

£f (x) =
1

[ulx,y ) = g (¥ 3} - [u(x,y ) - g (v ))
2 2 2 i 2 i
g ¥y} ~g ly)
3 2 3 1

f (x) =
3

In zddition to these expressions for gz, g3, fl and fa’ the given conditions

require
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=
n

f(x)+g (y)+£f (x)g (v)
11 1 1 2 1 3 1 3 1

[=
]

1 fl(xl) + gz(yq) + fs(xl)ga(yz)

=1
]

. fl(xz) + gz(yl) + fs(xz)ga(yl)

[+
i

22 fl(xz) + gz(yz) + fa(xz)ga(xz),

so that [fs(xz) - fa(x1)][g3(y2) - 83(y1)] = v + u, " u12 -, which
is nonzero by wresupposition. Hence the denominators of gz, ga, f1 and f3
do not vanish. By substituting the foregoing solutions for gz, ga, f1 and
f3 into the right hand side of (21) and then using the displayed equations
for u11’ u12’ u21 and uzz’ it is readily verified that v is given by (22).
The equivalence between (22) and (23) is most easily estatlished by showing
that the right hand side of (23) 'reduces' to the right hand side of (22).
The form of v given by (23) shows immcdiately that v is affine preserving.

QOE.D.

Although (22) guarantees |v - u| = 0 for more line segments in T than
does either (6) or (1l4), analysis of ||v - u|| appears to be considerably
more difficult for (22) than for the simple additive or multiplicative
approximations. Because of this I shall discuss only one specific context
for (22) thatr has interesting and easily derived properties. The form of
(22) used in the ensuing theorem might be thought of as a boundary model
or perimeter model since it guarantees that Iv(x,y) - u(x,y)! = 0 whenever

(x,y) lies on the boundary of I.

THEOREM 7. Suppose u is conservative [see (7)] and v is specified by

(22) with (x ,yl) = (0,0) and (xz,yz) = (1,1). Then v is conservative also

and ||v - u|| < 4/2, where A = u(L,0) + u(0,1) - u(0,0) - u(l,1).
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This theorem is directly comparable to Theorem 2 which uses the additive

approximation. Theorem 7 does not guarantee a lower ||v - u|| than does

A TSR R SRR

Theorem 2 (where ||v - u|| < A/3). However, ||v - u|| for (22) can be
considerably smaller than A/4, and can equal zero, whereas ||v - u]| must
be at least as great as A/4 when (6) is used for v. Moreover, the boundary

model form of (22) has the attractive property of conservatism preservation.

AU ba e &t AT T

Proof. The form of (22) specified in Theorem 7 can be written as

P Y

v,y) = = {000,y [u(x,0) = u(x,1) +u(l,1) = u(1,00] + u(l,y) [ux,1)
= u(x,0) + u(0,9) - u(0,1)] + u(x,0)[u(1,1) - u(0,1)]

+ U(K,l)[U(0,0) - u(lso)] + u(O,l)u(l,O) - U(0,0)U(l,l)}a
Therefore, when y~ > y,

vix,y") - v(x,y) = - % {[u(0,y") - u(0,y))[u(x,0) - u(x,1) + u(1,1) - u(1,0)]

+ [U(l»y‘) - u(l,y)][u(x,l) - u(x,0) + u(0,0)

- u(0,1)]}

since, under conservatism, A > 0, u(0,y”) - u(0,y) > 0, u(l,y") - u(l,y) > 0,

and each of u(x,0) - u(x,l) + u(l,1) - u(l,0) and u(x,1) - u{x,0) + u(0,0) ~
u(0,1) is negative unless x € {0,1} in which case one of these terms is zero.
Therefore v increases in y. Similarly, v increases in x.

To verify consecvatism, or (7), for v, suppose x < x” and y < y~. Then,

after cancellations and rearrangement, we obtain

v(x,y") + v(x",y) - v(x,y) - v(x",¥y7) =

LE(O’Y’) - u(0,y) - U(l;y’) + u(l,y)]{u(x,0) - u(x,l) - U(x‘zo) + u(x‘,l)]

-4
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and this is positive siice [u(0,y”) - u(0,y) - u(l,y") + u(l,y)] > 0 and

[u(x,0) - u(x,1) -~ u(x",0) + u(x”,1)] < 0.

e e B e o i ke

Finally, since both u and v are conservative and v = u on the border

of T, if 0 < x <1 and 0 < y < 1 then

max {n(0,7) + u(x,1) - u(0,1),u(x,0) + u(l,y) - u(1,0)} < min {v(x,y),u(x,y)}

< max {v(x,y),u(x,y)} < min {u(0,y) + u(x,0) - u(0,0),u(x,1) + u(l,y) - u(1,1)},

i ey, SRR e T AR g ) R TR 3’; grrq{‘a‘“ﬁ@gj 5

so that
[v(x,y) - u(x,y)| < min {u(x,0) - u(x,1) + u(0,1) - u(0,0),
} , u(x,1) - u(x,0) + u(1,0) - u(l,1),
, (24)
. u(C,y) - u(l,y) + u(1,0) - u(0,0),
‘\ ; u(l,y) - u(0,y) + u(0,1) - U(lsl)}-

The four terms in braces in (24) are positive under conservatism and their

sum equals 2A. Hence the smallest of these four cannot exceed A/2. There-

fore |v(x,y) - u(x,y)| < A/2 for all (x,y). Q.E.D.

L - { The following assertions, whose proofs are left to the reader, make

additional comnections with our previous discussion of conservatism. Let

» * .
I S

R(x%,y) equal the right hand side of (24), with v as in Theorem 7. Then

14

iﬂm‘

R(x,y) is uniquely maximized at the point (x*,vy*) specified by (10) and (11},

with R(x*,y*) = A/2., R(x,y) decreases on each ray out from (x*,y*) and is

£
T i,

constant on the borders of rectangles whose corrers lie on the ¢ = ¢
00

11

] and mo = ) lines of Figure 2. Two such lo*1i of constant R are ideatif:ed
{ 4

by dashed lines on Figure 2.
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4. LINEAR INTERPOLATIONS

The simple forms of (2) that were examined in the preceding section
have each fi and g, as either the identity function or an exprecsion based
on conditional utility functions for one of the variables., 1In the present
section we shall consider approximations by linear interpolation in which
the functions involved in (2) that are not based on utility values are more
vomplex than the identity function but nevertheless retain fairly simple
forms. Needless to say, a vast array of nonlinear interpolation methods
could be used to approximate u(x,y), but, with the exception of a quasi-
linear form that is mentioned below, we shall not go into these.

The approximations in this section are based on a set {xl,...,xp} of

p > 2 values of X and/or on a set {yl,...,yq} of q > 2 values of Y, where

0=x <x <,,.<x_=1

1 2 P (25)

0 = < <y =1,
yx yz yq

Within the context of (25), we define the . lowing nonnegative piecewise

linear functions:

Xip, = X
e if x, < x < x,,.
xi+1 - xi 1 — 7 - i+l

ai(x) = i1=1,...,p-1)
0 otherwise

/1 - ai_‘(x) f x;  2x=x%x and i1>1

c.;(x) ={ a, (x) if Xy < X < x and 1 < p (1 =1,. ,p);

i+

\0 otherwise




-3

AR TR 4

a

3 y -y
H S
: +1
i By =4 3
¥
& 0
F
-
%: 1-8,,
;::}; * =
¢ Bj(y) Bj(y)
= 0
(=
i The GI and Bg functions are c¢
¢ x
3 ai(x) is zero up to Xy, inc

ai(x) +a* (x) = 1

i+
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ﬁyjjyiﬁﬂ
(j = 1,-.-,(1 = l)

otherwise

< <
if Y-y SY 2y and j > 1
if yjiyf_yj+1 andj<q (j=l)000’q)|

otherwise

ontinuous on [0,1]. For example, with 1 < 1 <

reases linearly from 0 to 1 between x;_, and x

decreases linearly from 1 to 0 between X, and xi+1, and is zero after Xip*

I+ 1s also useful to observe that

on [xi,x for i = 1’c-c’p - 1.’

i+1]

* = = -
B + By, (N =1 on ly,y,, 1 ford=1,...0q -1,
: q
: and, more generally, that L ag(x) = J B;(y) = 1 for all x and y.
i=1 =
Four Models
.li Within the context of the foregoing definitions, we shall consider the
SRR
Ly, 3: following four approximations for u:;
\ P
kR v (xy) = I a¥(x)ulx,y) for all (x,y) €T
5 ‘ i=

v (x,y)
2

va(x,y)

[ ]

H

J

q
x
E‘ Bj(y)U(x,yj)

for all (x,y)

=v (x,y)/2 + vz(x,y)/z for all (x,y, < s,

P

i’
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s v, (5Y) = 0 (B gy + o L - By o+ 11 -0 018, (Muy,
g -y I - 80wy, 4y for all (y) € [xgox, 1~
E [yj’y3+1]’ with i = 1,...,p - 13
g ; j=1,oao,q—l’
.k
F
| ﬁ where uij = u(x{,yj) as in (18). The points in T at which these approxima-
E tions are exact are illustrated by Figure 4(a): v1 = y along the vertical
i tﬁ
|
: : Figure 4 about here
; lines; v2 = u along the horizontal lines; and v3 = v =1 at the pq lattice
iy 4
y
3 " points (xl,yl),(xl,yz),...,(xp,yq). These assertions follow immediately
? ' x from the definitions and the observation that
; \
: Xigg ~ % X =X
vl(x,y) = (;;+1 — i;)u(xi’y) + (;:::j::;;)u(xi+l,y) ifx, <x<x. (26)
y +1 - y y - y
v (x,y) = (—‘L———-_ —u(x,y,) + (———)ulx,y 4y <y<y,. @D
s 2 Yj+1 )j j yj+1 yj j j j l
a 4
o |
» The determinations of v(x,y) for (x,y) € [xi,xi+1] x [yj’yj+1] are noted with
jﬁ ; reference to Figure 4(b). The value of vl(x,y) is the convex linear combina-
AN S
T
Ny 33 tion of u(xi,y) and u(xi+1,y) shown by (26); vz(x,y) is the linearly inter-
;;f,;é polated value between u(x,yj) and u(x,yj+1) shown by (27); va(x.y) is the
' . average of the horizontal and vertical interpolations given by vl(x,y) and
Y, .
vz(x,y) [modification of v3 to the form )\v1 + (1 - K)v2 allows different
T 5 emphases to be placed on the horizortal and vertical interpolations]; and
. v (x,y) 1s glven by a weighted average of tbe four u values at the corners
} R of [xi’xih] x [yj’yj+1]’ The quasi-linear approximation v can be thought
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of as a two-stage linear interpolation process since, with a = ai(x) and

B = Bj(Y)’

v, (8y) = av (k) + (1 - o)y (xy,,Y)

= alBuy; + (L= By o 1+ (1= o)[Bu

i+1,] +a- B)ui+1,j+J]
+ (1 - a)

[

B[auij + (1 - a)ui+1,j] + (1 - B)[ou

1,3+ Uipr, g1

% o kN £ T, o v EA
HEAR R W "

Bv (x,y,) + (1 - CANCM PR

Moreover, if u is linear along each of the four border line segments of the

‘.
R R e e T

rectangle [xi,xi+1] x [yj,yj+1], then v: = v“ throughout the rectangle, but,

re TN

without such linearity, coincidence of v3 and vu is assured only at the four

; corners.

There are several major differences between v and the other three
4

K. i approximations. First, V1’ v2 and v3 presume that p, q or p + q conditional

.
e T
e

utility functicns are evaluated, whereas v uses only the u values at the pq
N

lattice points. Secondly, vl, v2 and v3 are clearly within the format of

id ‘ (2), whereas this is not at all clear for v . I leave it to the reader to
¢ . v" +

Ji show that v can indeecd be viewed as a special case of (2), but it appears
z 4

that this can be done only when some of the fi and 84 functions have dis-

Fra
s
]

I‘ R

) et

continuities. As shown by the definitions of vl, v2 and v , and by previous
3

3
e

discussion, the fj and 84 functions used therein are all continuous on [0,1].

SIA

i 2
1“&#

Despite the-e differences, all four approximations possess certa.n

el
£
e

o

preservation properties defined earlier.

THEOREM 8. Each of v , v2, v and v 1is continuous, affine preserving,
—_— 3

"

monotonicity preserving, and conservatism preserving.

2hokla 1 e

. ‘;Mg ,}w“m
TN

«
R
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Proof. Because of the similarities among v , v , and vs, it will
— 1 2
suffice to consider only v1 and v . Continuity for v is cbvious and it is
4 1
easily seen to hold for v“. Affine preservation is easily checked. For

monotonicity suppose first that x

<x< x* < x and that u is monotonic

i i+1

in x. Then, by (26),

x* - x

vl(x*,y) - vl(X.y) = (xi+1 - xJL) fuxg,,»¥) - ux;,01, (28)

so that vl(x*,y) - vl(x,y) has the same sign as u(x - u(xi,y). Hence

i+1’y)

v 1is monotonic in x on the interval [xi,x ] in the same sense that u is
1

i+l

monotonic in ¥ on this interval. Since this is true for all [xi,xi+1], v1

is monotonicity preserving in x. Suppose next that yj Sy <y*< yj+1 and

that u is monotonic in y. Then, by (26),

Xjgg ~ %
v Gy - v o(x,y) = ) [udxg v - ulxg,y))
1 1 X4 T %

X - xi
+ () [ulx, L, y*) - ulx, ,¥)],
x1+1 - xi i+ i+

from which it follows that v1 is monotonicity preserving in y. With regard

tov , if X, < x < x* < x and y € [yj ] then
. 2 =

1+4) RATS

v (x*,y) = v (x,y) = o (x) - a (x*)][B, (y)(u u
[ b j

1+1,j 13)
(29)

Q= BN gy gy g )

with ai(x) > ai(x*). Hence if u is monotonic in x then v is monntoaic in x

'S

in the same sense as u on the interval from Xy to Xy and, since this is

+1

true of each such interval, v 1is monotonicity preserving in x. The proof
4

that v is mcrotonicity preserving in y is similar.
4
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To establish conservatism preservation we work first within a rectangle
; * *
4 [xi,xi+1] X [yj,yj+1] with x, < x < x x4 and ¥y <y<y j.yj+1, and
: assume that u is conservative [see (7)]. Using (28),
y . -
! v (%,y%) + v (x%,Y) = v (%,Y) - wxhy0) = (T E) [ulx,y%) +oulx,, LY)
: 1 1 1 1 X441 Xy i i+

- ulxg,y) - oulxg, »y%) .

Since conservatism for u implies that the right hand side of this equation is

positive, it follows that vx is conservative in the rectangle. Using (29),

v, (YR v (ehy) - v (Gy) - v (eryY) = oy () - oo e ]IB(y) - By (%))

[u u

4,941 T Y,y T ey

" Ui, g D

and, since each term on the right hand side is positive, the left side is
positive also. Hence v“ is conservative in the rectangle. Therefore both
vl and v“ are conservative in every rectangle cf the form [xi’xi+1] x
[yj,yj+1]. It then follows without difficulty--by breaking any rectangle
[x,x*] x [y,y*] into subrectangles according to the grid of Figure 4(a), and

adding up the inequalities implied by conservatism on each of the subrectangles—-

that v1 and v are conservative throughout T. Q.E.D.
[N

Uniform Norm Cor.siderations

Given (25) and (x,y) € [xi,x ] x [yj,yj+1], the absolute differences

i+

between u(x,y) and the approximations defined above are as follows:
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v, ) = uGy)| = fay () [ulxsy) = uGy)] + (1 - o ) [ulxg, ,y) - ux]|

IVZ(X.y) - u(x,y) | IBj(y)[u(x.yj) - eyl - BN [y, ) - u(x,y)]]

v, Gy) - uGy) | = o i,y - a@y] + 4 - o 60) [ulxy,, ) - )]
+ Bj(y)[u(XSYj) - u(XQY)] + (l - Bj(Y)[U(x,yj+;)

- ux,y)]|

v, 069) = uGy)| = oy By (D Iuyy = wb6y] + 0, G = B Oy 4,
S U]+ -0 B W luyy, - ulxy)]

+Q-0,)Q - By vy g4y — ul0¥)]

In the present setting it 1s natural to consider the effects of increases in
p and/or q on ||v - u||. Although this can be done with either equal or
unequal spacing of the x ory, in {0,1], I shall consider equal spacing for

expository simplicity. Thus, let v(p) denote v1 when the p points in (25)
1

are equally spaced in [0,1], with X, = (1 -1)/(p ~1) and Xig, “ % =
1/(p - 1); let v:q) denote v under similar convention; let va) = v(p)/z +
& 3 -

vfp)/z; and let vfp) denote vg when p = q in (25) with X, = @-1/(p -1
and 3y * (3 - D/ - 1).

We shall now observe that each ||vép) - u|| for k = 1,2,3,4 approaches
zero as p gets large. This will be done using moduli of continuity, which

are measures of the variations of continuous functions on compact sets. With

respect to the utility function u on T, we define

wu,h) = max {Ju(x,y) - u(x",y)|: x,x7,y,y” € [0,1], [x - x"| < h
and |y - y°| _ h},
w (u,h) = max {|u(x,y) - ux",y)|: x,x",y € [0,1}, |x - x“| - hi,
w (wh) = max {Jux,y) - uC,yD |t xy,y" € 10,11, |y - y7| < hl,



37

n
| %: for all h € [0,1). Considered as functions of h, w is the modulus of con~
! %J tinuity for u, and wl and wz are partial moduli of coatinuity for u. These
U
6‘(\
; %_ definitions presume nothing about differentiability or monotonicity for wu.
j Ei It is easily seen that the moduli are nonnegative, nondecreasing and satisfy
Ly
I %
e; max {Lul(u,h),u)2 (u,n)} < w(u,h) < wl(u,h) + wz(u,h).
a ¥
H
; e
: % Moreover, because u is continuous on a closed and bounded set, it follows
; readily from standard results (e.g., Bclzano-Welerstrass rheorem, existence
J of convergent subsequences) that each of w(u,h), wl(u,h) and wz(u,h)
approaches zero as h =+ 0.
)
: THEOREM 9. Ilvép) - u|| » 0as p+ o for each k € {1,2,3,4}. In
\ % particular,
: v - ul] < @1/ - 1) for k = 1,2
k _wk ’ p or N
Ilv:p) ~uf] 2w @1/ - 1) e (u,1/0 - 1)]1/2 £ wlw,1/(e - 1),
[v® - uf] < w1/ - ),
) 4
i
R ’ and if each of w, w, and w, 1is n concave function of h then
:‘ : (P) - _._..__._____1 =
:3 v = ull < @ ugp—gyp  for k= 1,2,
; ¥y ) (
M \P) - < ......_._l_.._ .__._1__._.. ...__]:_.__.
f?.-g v -l 2 o ggmp) + 0, o )/2 2 g oy

£
e

~ ¥ r
- h
- N - ‘ Sk, - .
T AMM
—~
o
S

9
Lelem o)

-

v,

Proof. The initial results of the theorem follow readily from the

expressions for IVk(x,y) - u(x,y)| written earlier and from the foregoing

¥:

o
k

comments on %he moduli of continuity. For example, omitting u from w for

notational convenience,

-
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1 v® t3) - ] < 0@ Juegy) = uGy) |+ @ = age)utxy,, ¥ - )|
% <0y Gu (1 - ag (016, - %)) + (- 8 6)
| % w oy () (xy, ) = x4))
; i 1-a,x) ai(x)
% = ai(x)wl(----p )+ Q- ai(x))wlcgﬁ:—f),
b
% so that
{ ® _ || < oo, - o
v "””wﬁitwﬁp‘ﬁ+(l 0w, =]
- 1 1
< max fou, G2 + (L= v, I
R = wx(l/(p - 1)).
. \ . 1f W is concave in h then awl((l ~a)/(p-1))+ (1 -a)w (a/(p -1)) <
[\ ) i
wl([a(l -a) + (1 -a)a)/(p -1)) j_wl([l/zll(p - 1)). To verify the

concavity vesult for v , we note first tha*
M

|vfp)(x,y) - u(x,y)| f_ai(x)Bj(Y)|uiJ - u(x,y)| + a, ()1 - Bj(y))lui,j+

- uy |+ (- B ey, - uly)|

- )@= B ON]uyy gy - uy) |

o

]
P

< ai(x)Bj(y)w(max {1-a,00,1- Bj(Y)}/(p - 1))

k

v 1?:3&0}

+o, ()1 - Bj(y))w(max {1- ai(x),Bj(y)}/(p - 1))

+ (1 - ay(0)B, (wmax {a,(x),1 = BN (@ - 1))

3

+(L-a,)A -8

LN 4

j(y))w(max {ai(x),Bj(")}/(p - 1)).

Therefore
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[Iv® - 4|} < max [aBw(max {1 - 0,1 - 8}/(p - 1))
4 0<0<1
0<B<1 + a(l - B)w(max {1 - o,R}/ (p - 1))
+ (1 - o)Bw(max {o,1 - B}/ (p - 1))

+ (1 -a)(l - Bu(max {o,B}/ (p - 1))].

Suppose that @ < B < 1 ~ o. Then, assuming concavity for w,

(p) , l-~-qa l-a
!lv“ - uf| 5'2?2 [aBuG—7) + o - BuC—7)

+ - WMETD + -0 - BucED]
< max [am(; - ﬁ) + (1 - a>w(2§él::I§l)]

o,B
< max w((l - ) fa + iB(l - B)])
—a’B p_
9/16
w(p -1

where the maximizing values are o = 1/4 and £ = 1/2. Because of the

synntetry in @ and 1 - &, and in B and 1 - B, this suffices to establish the

final conclusion of the theorem. Q.E.D.

Although Theorem 9 might be used in practical situations to estimate an
upper bound on the maximum difference between v(¥,y) and u(x,y) for a given
p that can be assured by a linear model, it says very little about good ways

to choose the X, and/or yj for (25) in attempting to minimize ||v - uf| for

fixed p and/or q.

To illustrate the latter idea, suppose u increases in both variables

and v is used with p = q = 3. Then the best general assertion that can be

made for an upper bound on ||v - ul| is
N
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[lv. = ul| < min [max {u(x ,1) - u(0,y ),u(l,y ) - u(x ,0),
& - 0<x <1 2 2 2 2
— Qs

(30)
o<y, <1 u(l,1) - u(xz,yz),u(xz,yz) - v(0,0)}].

For convenience set u(0,0) = 0 and u(l,1) = 1, and let V denote the value of
the right hand side of (30). Then, because of 1 - u(xz,yz) and u(xz,yz) ~ 0
in (30), V> 1/2. In any event, it can be shown that some point that
satisfies u(xz,l) - u(O,yz) ~ u(l,yz) - u(xz,O), or u(xz,O) + u(xz,l) =
u(O,yz} + u(l,yz), must be a minimaxing point for V. There exists a unique
(x:,y:) that satisfies u(x:,O) + u(x:,l) = u(O,y:) + u(l,y:) and u(x;,y:) =
1/2. Consequently, if u(x:,l) - u(O,y:) <1/2 then V = 1/2, and if u(x:,l) -
u(O,y:) > 1/2 then V > 1/2. 1In the latter case, (x:,y:) may or may not be a
minimaxing point for V, depending on the behavior of u(xz,l) - u(O,yz)
relative to u(xz,yz) along the curve through T that gives the (xz,yz) solu-
tions to u(xz,O) + u(xz.l) - u(O,yz) + u(l,yz). However, the choice of

(x:,y:) as the interior point to use for v“ when p = q = 3 appears to be

reasonable.

5. EXACT GRID MODELS

In concluding our discussion of approximations for u on T = [0,1]? we
shall consider several approximations that are exact (v = u) on both the
horizontal and vertical line segments of a grid on T such as shown in Figure
4(a). To focus the discussion we shall say that an approximation v is an

exact grid model if v(xi,y) = u(xi,y) for all y € [0,1] for at least two

distinct Xys and if v(x,yj) = u(x,yj) for all x € [0,1] for at least two

distinct yj.
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The only approximation of previous sections that is an exact grid model
is the simple additive-multiplicative model discussed at the end of
section 3, Approximations v3 and v“ of the preceding section are not exact
grid models since they are exact only at the lattice points or intersection
points of the grid. On the other hand, the simple forms of section 3 can all
be adapted to serve as exact grid models on any grid formed from a finite
number of horizontal and vertical lines through T by applying these forms in
a patchwork or cut-and-paste fashion to different sections of the grid.
Suppose, for example, that (25) holds with p > 3 and q > 3. Then, provided

that u, # 0 for each (1,j) € {1,...,p = 1} x

3V Y50 T Y5 T Yy
{1,...,q9 - 1}, the simple additive-multiplicative form can be applied separately

-~
ER R AN,

to each rectangle [xi,xi+1] X [yj,yj+1]. That is, (23) with xl,xz,yl,y2

Lo s

replaced by XX is taken to hold throughout [xi’xi+1] X [yj,yj+1]

fori=1,...,p~-1land j =1,...,9 - 1. The resultant approximation is exact

.
——

on the grid of Figure 4(a).

Alternatively, with 0 = x < x” < x < x” <...<x <x7 <x =1
1 1 2 2 p-! p-i p
and 0 = <y’ < <y’ << <yl < = 1, one could use the
y1 yl y2 yz yQ'l yQ"l yq

additive form

vG6LY) = ulyl) +ulxg,y) - ulxgyy) for all (6,y) € [x;x; ) > 1ygyg ),

except that [x ) 1s replaced by {xi,x 1 when 1 = p - 1, and [yj,yj+1)

L%+ 141~

is replaced by [yj ] when j = ¢ - 1. The resultant approximation is

’yj+1

exact on the grid determined by x;,x;,...,x; and y;,y;,...,y;_l, but it

-1
has one serious disadvantage that is not shared by the patchwork adaptation
of the simple additive-multiplicative model based on (23), and that 1is its

propensity for discontinuities along the X, and yj lines. A similar
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disadvantage arises with an adaptation of the simple multiplicative model.
Hence, because of the analytical difficulties that accompany discontinuities,
the only ore of the three simple forms of section 3 that appears to adapt
itself reasonably well to a patchwork format is the additive-multiplicative
form. The adaptation of this form is continuous, and Theorem 7, involving

conservatism, 1s easily generalized to the patchwork format.

A Generalized Multiplicative Form

In the remainder of this section we shall consider a generalization of

the simple multiplicative form that is not a patchwork adaptation. It is

based on m fixed points for X and for Y subject to

0<x <x <,.¢x <1
- 1 2 m (31)

0 f_yl < y2 <iho¥ Yo <1,

and is derived directly from (2) and the restriction that v = u along each
line determined by the 2m fixed points in (31). Its basic form is given as

m m

v(x,y) = L I c u(x,y Ju(x,,y), (32)
i=1 j=1 13 j 1

where the cij are based on the m~by-m matrix of u,, values (i, =1, .,m).

ij
Whenm=1, ¢ = l/u1 and (32) reduces to the simple multiplicative model

el .

(14). Wwnenm =2, ¢ =u [fA, ¢ =-u JA, ¢ =-u /A, andc =u /A,
n 22 12 21 2 22 22

where A=u u =~-u u , the determinant of the u,, matrix. Thus the
122 12 24 1]

m = 2 version of (32) provides an alternative to the exact 2-by-2 grid model

of the simple acditive-multiplicative form so long as the uij matrix 1s

aonsingular,
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Approximation (32) seems attractive for several reasons. It has a nice
analytical form, is exact on the grid determined by the points in (31), and
is continuous. Moreover, if u 1s differentiable then v is differentiable.
However, it 1s neither affine preserving nor monotonicity preserving, and it
does not submit easily to analyses of ||v - u||. Although very little is
known about ||v - u|i at the present time, it is hoped that further research
will determine the conditions under which (32) gives a good approximation
to u.

Because of the absence of interesting results on ||v - u||, I shall
present only the basic derivation of (32) fror (2) and note the effects of
positive affine transformations on this approximation. This presentation
parallels the discussion for the simple multiplicative form in (14) through
(17). In the present setting we shall presume that m > 2 and, given u and
(31), let U denote the m~by-m matrix [uijl' Also let Uij be the (m - 1)-by-
(m - 1) matrix obtained from U by deleting its ith row and jth column and,

with det the determinant function on square matrices, define

A

det (U)

Ay 1D ger Uy L= L.,

so that Aij is the cofactor of uij'

THEOREM 10. Let u and (31) be given with m > 2, and suppose that

m
v(x,y) = L fk(x)gk(y) for ali (x,y) € [0,1)? (33)
k= '

with v(x,y) = u(x,y) whenever x € {xl,...,xm} ory€ {yl,...,ym}, and that

U is nonsingular (A # 0). Then
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m m
vimy) = T I (A/Au(xy)u(x,y)  for all (x,y) € [0,1]%. (34)
i=1 =1

m Zm

Moreover, if a and b are real numbers with a > 0, and if aA + bZi" ju1 Aij

# 0, then

ab m m
YY) = b oyx,y) +K(a,b)[A- I I Agy ulxssy))

# i=1 j=1
(35)
m m
[A- £ I A, u(x,v,)]
i=3 =) 1] 3
where
K(a,b) = _:1 - ) (36)
AlaA+b I I A,]
i=1 j=1 13

Expression (35) 1is the appropriate generalization of (16) or (17) for
m=1. As seen by (36), the only real value of K that cannot be obtained
with admissible values of a and b is K = -1/(AEij Aij), corresponding to
11 Aij $# 0., If Zij Aij = ) then every real K is
admissible. Moreover, if b # 0, then (35) shows that vab(x,y) = av(x,y) + b

a = 0, provided that I

if and only if [A - Zij Aij u(xi,y)][A - u(x,yj)] = 0, which holds

Ly Ay

ifx€{x,.c.,x }ory€{y,...,y } since Z, A £, A, u,, = A and
L m 1 m i

13 %13 T %1 %43 i
Zi A ujy = 0 if h # j and Zj Akj ugy = 0 if k # i, but which cannot be
expected to hol. otherwise.

We conclude with an outline of the proof of Theorem 10 since the

complete proof 1s rather long. Assume henceforth that the first sentence

of the theorem applies. Substitution of X, and then yj into (33) gives
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m
kil fk(xi)gk(y) = u(xi,y) i=1,...,m

m

kE1 fk(x)gk(yj) = U(x,yj) j=1,...,m

Let F be the m-by-m matrix whose entry in row 1 and column k is fk(xi)’ and
let G be the m~by-m matrix whose entry in row j and column k is gk(yj),

Fik and Gik are defined similarly to U,, by deleting rows and columns. Then,

13

if F and G are nonsingular, Cramer's rule gives

o 1+k
gk(y) = T u(xi,y)(-l) det (Fik)/det ®» k=1,...,m
i=1
m 3+k
£(x) = T u(x,y,)(-1) det (G.,)/det (G) k=1,...,m.
k 4= j ik

It then follows from the product and transposition rules for determinants
(with a prime denoting transposition) that det (F) det (G) = det (F) det (G”)

= det (FG") = det ([Zk fk(xi)gk(y )]) = det (U) = A, since the initial

]
conditions require uij = Zk fk(xi)gk(yj)’ and hence that neither F nor G is

singular with

m »om 1+ m
kE; £, (x)g (v) =% iil jil u(X,yj)u(xi,y)(—l) kza det (F, ij)e (37)

It can be shown that det (Uij) = Zk det (Fik ij), and therefore (33) and
(37) yield (34).

Assume henceforth that (34) holds and that aA + bzij Aij # 0 with

b b
3

a>0. Let 03 = [auij + b] with Aab = det (Uab) and A: the cefactor of

auij + b in Uab( Then direct substitution in (34) gives
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=]

m
vy = T 5 /AT [au(xy,) +bllau(x,y) 4B (38)
i=1 j=1 J

Let ¢ denote a generic permutation on {1,...,m}, let sgn(c) be the number

of inversions in ¢ (an inversion occurs when i < j and o, > 0,), and let

i 3
7(1,k;0) be the product of the m - 2 Usg for those j ¢ {i,k}. It can then
h|
be shown that
ab m m-1 mom
A =a A+a b & I Aij’ (39)
i=) j=

A";?- m-1 Aij+am-2b g (1% s o), (4o
{o:ci=j} {k:k#i}
and that
m m
A D@ 1 ke =AL (T I Ay
{o:0,=3} {k:k#i) J k=, =

(41)

m m
- (2 A (T A ).
h=i ih k=

The last jdentity allows one to conclude immediately that the sum of its
left hand side over 1 equals zero and that the sum of its left hand side

over } equals zero. This fact along with substitution of (40) and (41) in

(38) gives

Aab vab m-1 m-2

I Y O UL R ST} [ELRNC R IENS)

t
™~

(x,y) =

+ ab(u(x,yj) + U(xi,y)) + b?]

_ o m* m ,
= a Zij Aij u(XSYj)u(xi’y) + a bzlJ Aij (U(X’yj) + u(xi’)))
R m- 2 m

- a b Zij Aij + a bzij u(x,yj)u(xi,y)[AiJ Zkh Akh

- (Zh Aih)(zk Akj)]/A.
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Multiplication by A and the use of (34) then gives

0% v (x,y) = a™1 A2 v(x,y) + a" BAIZy; Ay w0y, + I, Ay u(x,y)]
m=-1 .2 m
+ a b Azij Aij + a bAZij Aij v(x,y)

- " b(zij Ay u(x,yj))(Zij Ay u(xpy)) + a™ bA? - a® bA*

m m=i m m-,
bAla” A + a bzij Aij] + av(x,y)Afa” A+ a bzij Aij]

- a® b[a? - A(zij Ay u(x,yj) + zij Ay u(x;,))

+ (zij Aij u(x,yj))(zij Aij U(xi,y))]

R S e A LY,

~1

b _ m m
= Ala A+ a bZij Aij] by (39), yields

which, since AA?

m
a b[A - Zij Aiigy(x,yj)][A - Zij Aij u(xi,y)]

Vab(x,Y) = “v(x!y) + b = m m=—
Ala A+ a bEiJ Alj]

Sin:e this 1s equivalent to (35), the outline of the proof of Theorem 10 1is

completed.
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